Non-nucleoside reverse transcriptase inhibitors (NNRTIs) for the treatment of human immunodeficiency virus type 1 (HIV-1) infections: Strategies to overcome drug resistance development

1996 ◽  
Vol 16 (2) ◽  
pp. 125-157 ◽  
Author(s):  
Erik De Clercq
2001 ◽  
Vol 75 (13) ◽  
pp. 5772-5777 ◽  
Author(s):  
Jan Balzarini ◽  
Maria-José Camarasa ◽  
Maria-Jesus Pérez-Pérez ◽  
Ana San-Félix ◽  
Sonsoles Velázquez ◽  
...  

ABSTRACT The RNA genome of the lentivirus human immunodeficiency virus type 1 (HIV-1) is significantly richer in adenine nucleotides than the statistically equal distribution of the four different nucleotides that is expected. This compositional bias may be due to the guanine-to-adenine (G→A) nucleotide hypermutation of the HIV genome, which has been explained by dCTP pool imbalances during reverse transcription. The adenine nucleotide bias together with the poor fidelity of HIV-1 reverse transcriptase markedly enhances the genetic variation of HIV and may be responsible for the rapid emergence of drug-resistant HIV-1 strains. We have now attempted to counteract the normal mutational pattern of HIV-1 in response to anti-HIV-1 drugs by altering the endogenous deoxynucleoside triphosphate pool ratios with antimetabolites in virus-infected cell cultures. We showed that administration of these antimetabolic compounds resulted in an altered drug resistance pattern due to the reversal of the predominant mutational flow of HIV (G→A) to an adenine-to-guanine (A→G) nucleotide pattern in the intact HIV-1-infected lymphocyte cultures. Forcing the virus to change its inherent nucleotide bias may lead to better control of viral drug resistance development.


2007 ◽  
Vol 81 (20) ◽  
pp. 11507-11519 ◽  
Author(s):  
Francesca Ceccherini-Silberstein ◽  
Valentina Svicher ◽  
Tobias Sing ◽  
Anna Artese ◽  
Maria Mercedes Santoro ◽  
...  

ABSTRACT Resistance to antivirals is a complex and dynamic phenomenon that involves more mutations than are currently known. Here, we characterize 10 additional mutations (L74V, K101Q, I135M/T, V179I, H221Y, K223E/Q, and L228H/R) in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase which are involved in the regulation of resistance to nonnucleoside reverse transcriptase inhibitors (NNRTIs). These mutations are strongly associated with NNRTI failure and strongly correlate with the classical NNRTI resistance mutations in a data set of 1,904 HIV-1 B-subtype pol sequences from 758 drug-naïve patients, 592 nucleoside reverse transcriptase inhibitor (NRTI)-treated but NNRTI-naïve patients, and 554 patients treated with both NRTIs and NNRTIs. In particular, L74V and H221Y, positively correlated with Y181C, were associated with an increase in Y181C-mediated resistance to nevirapine, while I135M/T mutations, positively correlated with K103N, were associated with an increase in K103N-mediated resistance to efavirenz. In addition, the presence of the I135T polymorphism in NNRTI-naïve patients significantly correlated with the appearance of K103N in cases of NNRTI failure, suggesting that I135T may represent a crucial determinant of NNRTI resistance evolution. Molecular dynamics simulations show that I135T can contribute to the stabilization of the K103N-induced closure of the NNRTI binding pocket by reducing the distance and increasing the number of hydrogen bonds between 103N and 188Y. H221Y also showed negative correlations with type 2 thymidine analogue mutations (TAM2s); its copresence with the TAM2s was associated with a higher level of zidovudine susceptibility. Our study reinforces the complexity of NNRTI resistance and the significant interplay between NRTI- and NNRTI-selected mutations. Mutations beyond those currently known to confer resistance should be considered for a better prediction of clinical response to reverse transcriptase inhibitors and for the development of more efficient new-generation NNRTIs.


2014 ◽  
Vol 8 (03) ◽  
pp. 339-348
Author(s):  
Jacques M Mokhbat ◽  
Nada M. Melhem ◽  
Ziad El-Khatib ◽  
Pierre Zalloua

Introduction: Antiretroviral therapy (ART) has been successful at decreasing the morbidity and mortality associated with human immunodeficiency virus type 1 (HIV-1) infection. HIV-1 drug resistance (HIVDR) among ART-naive patients has been documented to compromise the success of initial therapy. This study was conducted to determine the prevalence of HIVDR mutations among newly diagnosed drug-naive HIV-infected individuals in Lebanon. Methodology: Plasma samples from 37 newly diagnosed participants at various stages of HIV-1 infection were used to determine HIV-1 RNA viral load, isolate viral RNA, and amplify DNA by RT-PCR. Purified PCR products were used to perform genotypic resistance tests. Results: The prevalence of resistance mutations to nucleoside reverse transcriptase inhibitors (NRTI), non-nucleoside reverse transcriptase inhibitors (NNRT), and protease inhibitors (PI) were 5.4%, 10.8%, and 8%, respectively. The major mutations detected in the study participants conferred resistance to NRTIs and NNRTIs recommended for HIV-1 treatment.  No significant relationship between HIV-1 viral load of participants and the mode of HIV-1 transmission or between the occurrence of HIVDR and the mode of transmission was found. Conclusions: To our knowledge, this is the first study on HIVDR mutations among newly diagnosed HIV-infected persons in Lebanon. The overall prevalence of HIVDR mutations detected in our study was 16%. Our results are important for evaluating the utility of the standard first-line regimens in use, determining the feasibility of HIVDR testing before the initiation of ART, as well as minimizing the emergence and transmission of HIVDR.


1996 ◽  
Vol 40 (12) ◽  
pp. 2887-2890 ◽  
Author(s):  
R W Shafer ◽  
M A Winters ◽  
A K Iversen ◽  
T C Merigan

The observation that human immunodeficiency virus type 1 (HIV-1) mutations conferring resistance to one reverse transcriptase (RT) inhibitor may suppress resistance to other RT inhibitors provides a rationale for treating HIV-1 with certain RT inhibitor combinations. We examined phenotypic and genotypic changes during culture of a multinucleoside (zidovudine, didanosine, zalcitibine, and stavudine)-resistant HIV-1 strain with and without additional RT inhibitors (nevirapine and lamivudine). The development of nevirapine or lamivudine resistance by the multinucleoside-resistant strain was not accompanied by a reduction in zidovudine or didanosine resistance.


2008 ◽  
Vol 53 (3) ◽  
pp. 1194-1203 ◽  
Author(s):  
Gregg S. Jones ◽  
Fang Yu ◽  
Ameneh Zeynalzadegan ◽  
Joseph Hesselgesser ◽  
Xiaowu Chen ◽  
...  

ABSTRACT GS-9160 is a novel and potent inhibitor of human immunodeficiency virus type 1 (HIV-1) integrase (IN) that specifically targets the process of strand transfer. It is an authentic inhibitor of HIV-1 integration, since treatment of infected cells results in an elevation of two-long terminal repeat circles and a decrease of integration junctions. GS-9160 has potent and selective antiviral activity in primary human T lymphocytes producing a 50% effective concentration (EC50) of ∼2 nM, with a selectivity index (50% cytotoxic concentration/EC50) of ∼2,000. The antiviral potency of GS-9160 decreased by 6- to 10-fold in the presence of human serum. The antiviral activity of GS-9160 is synergistic in combination with representatives from three different classes of antiviral drugs, namely HIV-1 protease inhibitors, nonnucleoside reverse transcriptase inhibitors, and nucleotide reverse transcriptase inhibitors. Viral resistance selections performed with GS-9160 yielded a novel pattern of mutations within the catalytic core domain of IN; E92V emerged initially, followed by L74M. While E92V as a single mutant conferred 12-fold resistance against GS-9160, L74M had no effect as a single mutant. Together, these mutations conferred 67-fold resistance to GS-9160, indicating that L74M may potentiate the resistance caused by E92V. The pharmacokinetic profile of GS-9160 in healthy human volunteers revealed that once-daily dosing was not likely to achieve antiviral efficacy; hence, the clinical development of this compound was discontinued.


2007 ◽  
Vol 81 (22) ◽  
pp. 12145-12155 ◽  
Author(s):  
Zandrea Ambrose ◽  
Sarah Palmer ◽  
Valerie F. Boltz ◽  
Mary Kearney ◽  
Kay Larsen ◽  
...  

ABSTRACT Antiretroviral therapy (ART) in human immunodeficiency virus type 1 (HIV-1)-infected patients does not clear the infection and can select for drug resistance over time. Not only is drug-resistant HIV-1 a concern for infected individuals on continual therapy, but it is an emerging problem in resource-limited settings where, in efforts to stem mother-to-child-transmission of HIV-1, transient nonnucleoside reverse transcriptase inhibitor (NNRTI) therapy given during labor can select for NNRTI resistance in both mother and child. Questions of HIV-1 persistence and drug resistance are highly amenable to exploration within animals models, where therapy manipulation is less constrained. We examined a pigtail macaque infection model responsive to anti-HIV-1 therapy to study the development of resistance. Pigtail macaques were infected with a pathogenic simian immunodeficiency virus encoding HIV-1 reverse transcriptase (RT-SHIV) to examine the impact of prior exposure to a NNRTI on subsequent ART comprised of a NNRTI and two nucleoside RT inhibitors. K103N resistance-conferring mutations in RT rapidly accumulated in 2/3 infected animals after NNRTI monotherapy and contributed to virologic failure during ART in 1/3 animals. By contrast, ART effectively suppressed RT-SHIV in 5/6 animals. These data indicate that suboptimal therapy facilitates HIV-1 drug resistance and suggest that this model can be used to investigate persisting viral reservoirs.


2001 ◽  
Vol 75 (20) ◽  
pp. 9644-9653 ◽  
Author(s):  
Solange Peters ◽  
Miguel Muñoz ◽  
Sabine Yerly ◽  
Victor Sanchez-Merino ◽  
Cecilio Lopez-Galindez ◽  
...  

ABSTRACT Resistance of human immunodeficiency virus type 1 (HIV-1) to antiretroviral agents results from target gene mutation within thepol gene, which encodes the viral protease, reverse transcriptase (RT), and integrase. We speculated that mutations in genes other that the drug target could lead to drug resistance. For this purpose, the p1-p6 gag -p6 pol region of HIV-1, placed immediately upstream ofpol, was analyzed. This region has the potential to alter Pol through frameshift regulation (p1), through improved packaging of viral enzymes (p6Gag), or by changes in activation of the viral protease (p6Pol). Duplication of the proline-rich p6Gag PTAP motif, necessary for late viral cycle activities, was identified in plasma virus from 47 of 222 (21.2%) patients treated with nucleoside analog RT inhibitor (NRTI) antiretroviral therapy but was identified very rarely from drug-naı̈ve individuals. Molecular clones carrying a 3-amino-acid duplication, APPAPP (transframe duplication SPTSPT in p6Pol), displayed a delay in protein maturation; however, they packaged a 34% excess of RT and exhibited a marked competitive growth advantage in the presence of NRTIs. This phenotype is reminiscent of the inoculum effect described in bacteriology, where a larger input, or a greater infectivity of an organism with a wild-type antimicrobial target, leads to escape from drug pressure and a higher MIC in vitro. Though the mechanism by which the PTAP region participates in viral maturation is not known, duplication of this proline-rich motif could improve assembly and packaging at membrane locations, resulting in the observed phenotype of increased infectivity and drug resistance.


Sign in / Sign up

Export Citation Format

Share Document